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Abstract: Cone-beam X-ray luminescence computed tomography (CB-XLCT) emerged as a
novel hybrid technique for early detection of small tumors in vivo. However, severe ill-posedness
is still a challenge for CB-XLCT imaging. In this study, an adaptive shrinking reconstruction
framework without a prior information is proposed for CB-XLCT. In reconstruction processing,
the mesh nodes are automatically selected with higher probability to contribute to the distribution
of target for imaging. Specially, an adaptive shrinking function is designed to automatically
control the permissible source region at a multi-scale rate. Both 3D digital mouse and in vivo
experiments were carried out to test the performance of our method. The results indicate that the
proposed framework can dramatically improve the imaging quality of CB-XLCT.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a novel hybrid X-ray CT/molecular imaging modality, X-ray luminescence computed to-
mography (XLCT) can be used for drug research, metabolic research and clinical diagnosis
[1–3]. Compared with conventional optical molecular modalities, i.e. fluorescence molecular
tomography (FMT) [4] and bioluminescence tomography (BLT) [5], XLCT has been shown to
be able to avoid obvious background noise while imaging deep tissue. Furthermore, XLCT has
been used in small animals in vivo [6–8].
In general, narrow-beam XLCT, pencil-beam XLCT (PB-XLCT) [9], and cone-beam XLCT

(CB-XLCT) [1–3] are three main types of common XLCT. Xing et al., firstly proposed a
narrow-beam XLCT to realize the 3D reconstruction of nanoparticles [2]. Further, using a
collimated pencil-beam X-ray, Li et al., designed a pencil-beam XLCT to recover the deep targets
[9]. Besides, narrow beam XLCT was proposed based on a limited-view imaging technique
[10]. However, although the above two XLCT techniques have high spatial resolution, long data
acquisition time significantly limits their application in drug research and early tumor detection
[11]. To resolve the problem, Chen et al., proposed a cone-beam XLCT (CB-XLCT) imaging
system, which can sharply reduce the imaging time and improve the X-ray dose utilization
efficiency [12].
Directly caused by the insufficiency of external measurements, high ill-posedness is still a

technical bottleneck for XLCT [3]. Extensive researches have been conducted to improve recon-
struction results. Chen et al., used the multi-spectral data to realize quantitative reconstruction
[13]. Liu et al., proposed a single-view reconstruction by a wavelet transform method [14].
Gao et al., presented a truncated singular value decomposition (TSVD) approach for CB-XLCT
imaging [7]. Generally, a prior information, such as structural prior, optical properties, sparsity
of target distribution and permissible source region (PSR) can effectively improve reconstruction
results [15–19].
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The PSR method can reduce the scale of inverse problem by reducing the number of unknown
variables, and has been widely employed to BLT, FMT and XLCT [13,20–24]. However, the
permissible region (PR) is traditionally determined by a rough and subjective estimation from
the surface photon distribution [13]. When the light source is deep in imaging body, the accuracy
of the method is affected [25]. Although the iterative estimation can be adopted to improve the
above deficiency, the threshold for the selection of PR is usually a fixed manually set rate, leading
to excessive iterations and high computational cost [26]. To overcome this obstacle, we developed
an adaptive shrinking permissible source region (ADS_PSR) framework for the imaging of
small targets without a prior information in this study. Meanwhile, a multi-scale kernel function
is designed to accelerate the shrinking rate automatically. To the best of our knowledge, this
is the first time that a special PSR framework was proposed to alleviate the ill-posedness of
inverse problem for CB-XLCT imaging. Several numerical simulation experiments and an in
vivo experiment have been performed to validate the effectiveness and robustness of the proposed
framework.
The contributions of the paper can be summarized as follows: 1) a novel PSR framework

was proposed to alleviate the ill-posedness of inverse problem of CB-XLCT; 2) instead of the
traditionally manual experience, a new shrinking function was designed to automatically obtain
permissible region; and 3) the proposed framework is suitable for combining with mainstream
reconstruction algorithms for CB-XLCT.
In Section 2, the imaging model of CB-XLCT and the proposed ADS_PSR framework are

introduced. Then, numerical simulation experiments and the in vivo experiment are demonstrated
in Section 3. Finally, we discuss the results and draw a conclusion in Section 4.

2. Method

2.1. Imaging system of the CB-XLCT

As illustrated in Fig. 1, the traditional scheme diagram of CB-XLCT imaging system mainly
includes the following parts: a cone beam X-ray source to achieve X-ray excitation, a CMOS
X-ray detector panel to collect X-ray projection data, an electron-multiplying CCD (EMCCD)
camera to collect luminescent data for optical imaging, and a rotation stage to realize multi-angles
X-ray excitation. Hence, X-ray CT imaging and 3D optical imaging can be achieved together by
CB-XLCT system.

Fig. 1. Schematic diagram of CB-XLCT system [11–12].
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2.2. Imaging model of the XLCT

In detail, X-rays are emitted by the cone-beam X-ray source and traveled through biological
tissues. Based on Beer-Lambert’s law, the propagation process of X-ray traveled in tissues can
be modeled as follows [11]:

X(r) = X0exp{−
∫ r

r0
µx(τ)dτ} (1)

where X(r) is the X-ray intensity at position r in tissue, X0 is the initial X-ray intensity at r0,
and µx is the X-ray attenuation coefficient which can be calculated via an attenuation-based CT
technique [1].

Sequentially, once nanoparticles distributed in the imaging object are irradiated by X-rays, the
visible or NIR light will be emitted. This emission light can be expressed as the following linear
relationship:

S(r) = εX(r)ρ(r) (2)
where S(r) is the target, which is often used to mimic the small tumor. ρ(r) is the nanophosphor
concentration at position r, and ε is the light yield of nanoparticles.

Due to the highly scattering and weakly absorbing properties of light in biological tissues, the
visible or near infrared (NIR) light transmitted in the tissues can be modeled by the following
diffusion equation (DE) model with the Robin boundary condition as follows [27–28]:

−∇[D(r)∇Φ(r)] + µa(r)Φ(r) = S(r) r ∈ Ω

Φ(r) + 2κD(r)[ν∇Φ(r)] = 0 r ∈ ∂Ω
(3)

where D(r) = (3(µa(r) + µ′s(r)))−1 is the diffusion coefficient, where µa(r) and µ′s(r) is the
absorption and reduced scattering coefficient, respectively. Ω is the domain of the image object
and ∂Ω is the corresponding boundary. Φ(r) is the photon fluence at position r. ν is the
outward unit normal vector to boundary, and κ is a constant describing the optical reflective index
mismatch.

Based on the finite-element (FEM) method [29], Eqs. (1) and (3) can be converted into a linear
relationship between the unknown nanophosphor distribution ρ and the NIR measurement J as
following matrix-form equation:

J = Aρ (4)
where A is the system matrix which is used to map the unknown ρ to known measurement J [8].

2.3. Reconstruction problem

The goal of CB-XLCT imaging is to recover the unknown distribution of the nanophosphor
based on the NIR measurement J captured by the EMCCD camera. However, the high scattering
character of light in biological tissue leads to a poorly conditioned system matrix A. Thus,
that it is impractically to solve ρ directly from Eq. (4). In addition, the usually limited optical
measurements and other experiment conditions further increase the difficulty of solution to the
above inverse problem. The distribution of nanophosphors in biological tissue are usually small
and sparse, compared to the entire imaging body [12–14]. Herein, the compressed sensing (CS)
theory can be applied to solve ρ by converting Eq. (4) into the following optimization problem
[30].

min | |Aρ − J | |22 + τ | |ρ| |p (5)
where τ is the regularization coefficient. | |ρ| |p is the Lp-norm of ρ. When p = 0, Eq. (5) is L0
norm, which is NP-hard. When p = 1, Eq. (5) is the well-known L1-norm as the convex relaxation
of L0-norm, which has been a widely used sparsity-inducing norm for CB-XLCT imaging [13].
When p = 2, Eq. (5) is the L2-norm, which is the commonly used Tikhonov regularization [31].
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2.4. Adaptive shrinking permissible source region framework for CB-XLCT imaging

Generally, the size of system matrix A in Eq. (5) is usually large and this obviously aggravates
the ill-posedness of the inverse problem [11,14]. To achieve high imaging quality, ADS_PSR
framework has been developed in this study. The implementation of the ADS_PSR framework is
started from the entire domain to a small area without a prior information. From every shrinking
iteration k, the permissible region (PR) Rk is updated by removing nodes with lower recovered
density. We define a following vector Pk to reduce the scale of inverse problem:

Pk =


1 if node i is within the permissible region

0 otherwise
(6)

As soon as Pk is determined, A and ρ in Eq. (5) become Ak = Ak−1 ⊗ Pk and ρk = ρk−1 ⊗ Pk,
respectively. ⊗ represents the operation that removes columns in previous matrix Ak−1 with
zero-element in column vector Pk. Then, an updated inverse problem has been converted as
follows:

min
Rk
| |Akρk − J | |22 + τk | |ρk | |p (7)

After solving Eq. (7), a new PR is determined by ranking the magnitude of Xk in the decreasing
order for next iterative reconstruction.
Aiming to automatically select the group of mesh nodes to obtain a shrinking ρk without

manual intervention, we designed an adaptive kernel function to automatically speed up the
shrinking process at a multi-scale rate as follows:

ζk = 1 −
β · exp[−(k − 1)/α]

1 + β · exp[−(k − 1)/α]
(8)

where k is the iterations which is set from 1. α and β is multi-scale factor and nonnegative
coefficient, respectively. α and β are all determined experientially to confine the shrinking rate.
For the reconstruction, the range of α and β is [2.5, 3.5] and [3.5, 7.5], respectively. Figure 1
shows the value of ζ function with the increase of k (α = 3, β = 6).

Fig. 2. The multi-scale of ζ function with the increase of k.
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In the implementation, length(R) is the number of nodes related to the PR determined in
the current iteration. Next, the number of nodes for the next round reconstruction with higher
recovered density is automatically obtained by bNum(R) · ζkc and bc is the integer operation.
With the increase of K, the trend of solution ρ(Ri) gradually to be stable, which means that the
difference of number of nodes between the adjacent rounds is gradually reduced. Especially, as
can be seen in Fig. 2, about 90% of the nodes of the previous solution ρk−1 will be maintained
as the value of k increases to 10, compared with 10% of that at the beginning. Meanwhile, the
number of discarded nodes with lower recovered density decrease correspondingly. Consequently,
the PR will correspondingly shrink to a stable area and a stable solution ρ can be acquired. Thus,
the function ζk can adaptively fit this case with a multi-scale rate. Table 1 shows details of the
proposed framework for CB-XLCT imaging.

Table 1. Procedure of the adaptive shrinking permissible source region framework for CB-XLCT
imaging

Algorithm: ADS_PSR framework for CB-XLCT imaging

Step 1: Parameter initialization. Set the iteration number k = 1 and compute the multi-scale rate ζ as in
Eq. (8) if k>1. Set the final nodes Nf = 10 according to experience.

Step 2: Solving Eq. (5) for Global reconstruction to determine a current PR.

Step 3: Sort recovered density of current nodes in the decreasing order, choose bNum(R) · ζk c mesh nodes
with higher recovered density to form a new PR.

Step 4: Get the vector Pk by Eq. (6) and Computing the optimized system matrix Ak .

Step 5: Local reconstruction based on Eq. (7) to refine a solution.
Step 6: if

∑
|Ak+1ρk+1 − Akρk |/ |Akρk | ≤ ξ or the number of nodes of refined PR Nk+1 ≤ Nf , output the

solution ρ based on the final PSR and quit; otherwise, go to step 2 for next round iteration.

3. Experiments and results

In this section, several numerical simulation experiments and an in vivo experiment were
investigated to evaluate the performance of the proposed framework. For detailed comparison, the
traditional iterative shrinking permissible region (ISPR) method was used in our study [19–23].
Besides, some widely-used algorithms in CB-XLCT, including the algebraic reconstruction
technique (ART) [32], the incomplete variables truncated conjugate gradient method for sparse
L1-norm minimization (IVTCG) [33] and the Tikhonov regularization algorithm for L2-norm
minimization [34] were adopted. Considering that L1-norm has been proved efficient for the
sparsity-inducing norm for detecting the sparsely distributed tumors [1–3], only our proposed
framework and ISPR method incorporate IVTCG algorithm. The threshold value of ISPR
was set as 50% and 70% according to previous works [22–23]. In addition, the regularization
coefficient τ of IVTCG and Tikhonov is automatically selected by the L-curve method [35–36].
The multi-scale factor α and nonnegative coefficient β of ζk function were set empirically as 3
and 5, respectively.
Several quantitative indexes, such as absolute location error (LE) [11], recovered density

(RD) [13], relative quantity error (RQE) [13] and the percentage of non-zero coefficient (PNZ)
[37] were adopted for assessment. The experiment codes were written in MATLAB and was
performed on a desktop computer with 2.20GHz Intel Xeon Processor I7-4702MQ and 16G
RAM.

3.1. Numerical simulation experiments

A mouse atlas of CT data, as demonstrated in Fig. 3(a), with a single nanophosphor target
and double nanophosphor targets respectively was adopted to test our method. The single
nanophosphor target was located with center of (17.8, 6.6, 50.8) mm. The double nanophosphor
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targets were located with center of (11.2, 14.6, 60) mm and (22.8, 14.6, 60) mm. The 2D views
of CT slices of the digital mouse model with single-target and double-targets were shown in
Fig. 3(d) and Fig. 3(e), respectively. All targets were designed as a small ball with a radius of
1mm to mimic small tumor. The voltage and current of X-ray source were set as 50kVp voltage
and 1mA, respectively. The attenuation coefficient of X-ray was set as 0.0535mm−1 [38]. The
homogeneous absorption coefficient and reduced scattering coefficient of the two digital mouse
models were set as 0.3mm−1 and 10mm−1, respectively [39]. The concentration of all targets
was 0.3183 µg/mm3, and the corresponding light yield were 0.15 cm3/mg [12].

Fig. 3. Reconstruction model in simulation experiment. (a) 3D Mouse Model (b) Forward
simulation of single-target case (c) Forward simulation of double-targets case (d) 2D view
of CT slice for the single-target case (e) 2D view of CT slice for the double-targets case.

The digital mouse model for single-target case was discretized into 47733 nodes and 251509
tetrahedral elements. The digital mouse model for double-targets case was discretized into 47656
nodes and 251161 tetrahedral elements. A cone beam X-ray source was used to excite the two
digital mouse models with every 20 deg intervals during a 360-deg scan. By using the Monte
Carlo (MC) method, which is implemented by the Chinese Academy of Sciences Molecular
Optical Simulation Environment (MOSE) software [40], we could get the forward simulation
results for the single-target case and the double-targets case as demonstrated in Fig. 3(b) and
Fig. 3(c), respectively.

3.1.1. Single-target experiment

For the single-target case, a mesh with 6367 nodes and 32158 tetrahedral elements (average
mesh size of about 0.41mm) was used for the inverse reconstruction. The 2D views of the
recovered results at Z = 50.8 mm plane by ADS_PSR+ IVTCG, IPSR with artificial threshold
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50%+ IVTCG, IPSR with artificial threshold 70%+ IVTCG, IVTCG with no processing,
Tikhonhov with no processing and ART with no processing are shown in Fig. 4, where the real
position of nanophosphor target is marked as the red circle. Table 2 presents the corresponding
quantitative results.

Fig. 4. The 2D views (Z = 50.8 mm plane) of the reconstructed results for the single-target
reconstruction.

Table 2. Quantitative results of the single-target case

Algorithm
Location error

(mm)
Recovered density

(µg/mm3)
Relative quantity

error (%) PNZ (%)
Iteration
number

ADS_PSR+ IVTCG 0.53 0.29 9.29 1.22 6
IPSR+ IVTCG

(artificial threshold
50%)

0.83 0.27 14.36 2.76 11

IPSR+ IVTCG
(artificial threshold

70%)

0.89 0.27 14.36 2.74 20

IVTCG 1.04 0.26 16.22 3.05 \

Tikhonhov 2.09 0.19 40.04 8.43 \

ART 3.68 0.12 62.64 11.52 \

From Fig. 4 and Table 2, it is significant that ADS_PSR and ISPR outperform the traditional
algorithms. The ADS_PSR method with IVTCG achieves the least LE and RQE, the highest
RD. However, with no processing, the LE of IVTCG is larger the 1mm, which means the
improvement of reconstruction by the proposed framework is remarkable. Furthermore, the PNZ
of the ADS_PSR method with IVTCG is the lowest, denoting that the solution of our proposed
method is the sparest. As shown in Fig. 5, the iteration number of ADS_PSR is significantly less
than that of ISPR with artificial threshold.

3.1.2. Double-targets case

In the double-targets simulation experiment, a mesh with 6746 nodes and 35189 tetrahedral
elements (average mesh size of about 0. 38mm) was adopted. Figure 6 gives the 2D views of the
recovered results at Z = 60 mm plane by ADS_PSR+ IVTCG, IPSR with artificial threshold
50%+ IVTCG, IPSR with artificial threshold 70%+ IVTCG, IVTCG with no processing,
Tikhonhov with no processing and ART with no processing. Table 3 presents the corresponding
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Fig. 5. The iteration number of ADS_PSR and ISPR with artificial threshold in single-target
case.

results and Fig. 7 is the iteration number of ADS_PSR and ISPR with artificial threshold in
double-targets case.

Fig. 6. 2D views (Z = 60 mm plane) of the reconstructed results for the double-targets
reconstruction.

As can be seen in Figs. 6–7, and Table 3, all methods can separate the two targets. The
proposed ADS_PSR with IVTCG yields the best results. However, the LE of one target are larger
than 1mm by ISPR method and IVTCG algorithm. Besides, the results of Tikhonhov with no
processing and ART with no processing are similar to that of single target reconstruction.

3.1.3. Stability analysis with single-target reconstruction

To further assess the stability and robustness of the proposed method for CB-XLCT imaging, we
conduct a series of experiments to investigate the reconstructed results in this section. Specifically,
the influence of nodes and tetrahedral elements, the influence of measurements, and the influence
of the measurement with different noise level were all evaluated with single-target reconstruction.

In the previous experiments, the surface data of the phantom were obtained with 20° intervals
for reconstruction. The reduction in measurement data due to decreased view angles will directly
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Fig. 7. The iteration number of ADS_PSR and ISPR with artificial threshold in double-
targets case.

Table 3. Quantitative results of the double-targets case

Algorithm

Location error
(mm)

Recovered density
(µg/mm3)

Relative quantity
error (%)

PNZ (%) Iteration
numberTarget 1 Target 2 Target 1 Target 2 Target 1 Target 2

ADS_PSR+ IVTCG 0.86 0.57 0.27 0.25 14.36 20.89 2.93 6
ISPR+ IVTCG

(artificial threshold
50%)

1.09 0.63 0.25 0.21 20.89 32.37 3.37 11

ISPR+ IVTCG
(artificial threshold

70%)

1.20 0.63 0.21 0.20 32.37 36.53 3.51 20

IVTCG 1.21 0.67 0.20 0.21 36.53 32.37 3.66 \

Tikhonhov 2.69 2.91 0.19 0.18 38.86 41.67 9.11 \

ART 4.35 3.55 0.11 0.18 64.35 41.67 15.83 \

aggravate the ill-posed inverse problem and thus affect the reconstruction. Thus, the influence of
different view numbers on the proposed method was investigated firstly. We gradually reduced
the number of view numbers to 12, 9, 6, and 3. The corresponding quantitative results were
reported in Table 4, and Fig. 8 gives the graph results on LE and RD. As shown Fig. 8, although
the quality of the proposed is influenced with the reducing of view angles, the LE are all below
0.7mm. Meanwhile, the value of RD decreased correspondingly. But the value of RD is almost
above 0.2 µg/mm3. Herein, it is obvious that the proposed method is robust in different view
angles.

Table 4. Comparison results for reconstruction single-target by ADS_PSR+ IVTCG with different
measurements

The number of view angles Location error (mm) Recovered density (µg/mm3) Relative quantity error (%)

12 0.40 0.27 14.00

9 0.40 0.26 14.40

6 0.41 0.21 34.08

3 0.65 0.14 54.90
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Fig. 8. Illustration of LE and RD at different number of view angles

It is noted that noise was unavoidable in CB-XLCT imaging [1–3], a group of experiments
with noise were also performed. Concretely, Gaussian noise with five different noise levels (5%,
10%, 15%, 20% and 25%) was added to the measurement data of single-target reconstruction.
Table 5 and Fig. 9 show the corresponding reconstruction results. Obviously, the LE are all
around (even below) 0.5mm. The RD are all above 0.2 µg/mm3. It is clear that the proposed
method is robust to measurement noise.

Fig. 9. Illustration of LE and RD at different noise levels.

To further evaluate the stability of the proposed method, the influence of nodes and tetrahedral
elements are investigated. Commonly used different level numbers of nodes and tetrahedral
elements (from around 10000 nodes to 2000 nodes) were adopted for reconstruction. The detailed
quantitative results are shown in Table 6 and Fig. 10. We found that although the numbers of
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Table 5. Comparison results for the reconstruction single-target by ADS_PSR+ IVTCG with
different noise levels

Noise level (%) Location error (mm) Recovered density (µg/mm3) Relative quantity error (%)

5 0.49 0.25 21.53

10 0.49 0.25 21.53

15 0.53 0.20 36.59

20 0.47 0.24 24.32

25 0.49 0.25 21.53

nodes decreases from 10635 to 2593, the LE changes basically between 0.4 and 0.8. Specially,
the number of nodes from 5000 to 6000 give the best results on LE. Similar to the results of
previous experiment with noise, the RD with different numbers of nodes and tetrahedral elements
are all above 0.2 µg/mm3.

Fig. 10. Illustration of LE and RD at different number of nodes.

Table 6. Comparison results for the reconstruction single-target by ADS_PSR+ IVTCG with
different numbers of nodes and tetrahedral elements

Nodes
Tetrahedral
elements

Mesh size
(mm)

Location error
(mm)

Recovered density
(µg/mm3)

Relative quantity
error (%)

10635 51973 about 0.26 0.78 0.25 23.02

9734 47165 about 0.28 0.58 0.26 19.37

7685 36782 about 0.36 0.58 0.26 19.29

6146 31988 about 0.42 0.40 0.27 14.00

5800 27138 about 0.49 0.41 0.27 15.02

4558 20938 about 0.63 0.82 0.26 18.03

3720 16836 about 0.79 0.78 0.25 21.12

2593 11345 about 1.17 0.74 0.20 37.75
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3.2. In vivo experiment

To ensure the feasibility of our proposed method in in vivo applications of CB-XLCT, a female
eight-week-old mouse was used for the in vivo experimental [14]. The homogeneous absorption
coefficient and reduced scattering coefficient of in vivo data were set to be 0.3mm−1 and 10mm−1,
respectively [39]. The voltage and current of a cone-beam X-ray source (Apogee, Oxford
Instruments, USA) with a micro 55-mm f/2.8 lens (Nikkor, Nikon, Japan) were set to be 50 KVp
and 1mA, respectively. A highly sensitive CCD camera (PIXIS 2048, Princeton Instruments,
USA) with a micro 55-mm f/2.8 lens (Nikkor, Nikon, Japan) was mounted vertical to the X-ray
axis to capture the optical data (620 nm). The integrating time and binning of the CCD were set
to be 30 s and 2 × 2, respectively. For the optical imaging, the 360 deg luminescent photons
data acquired by the CCD with 45 deg intervals was adopted for the inverse reconstruction.
Meanwhile, a flat-panel detector (C7921CA-02, Hamamatsu, Japan) was used to fulfill the
360 deg micro-CT imaging with 1 deg intervals. The micro-CT imaging was performed via
the Feldkamp-Davis-Kress (FDK) method [41]. The micro-CT result of the female mouse is
demonstrated in Fig. 11.

Fig. 11. The micro-CT result of the female mouse.

According to the result of stability analysis, the mesh with 5987 nodes and 28816 tetrahedral
elements (average mesh size of about 0.46mm) was utilized in in vivo experiment for inverse
reconstruction. The reconstruction results overlaid with CT data are shown in Fig. 12. The
detailed information of results are listed in Table 7. Figure 13 is the iteration number of ADS_PSR
and ISPR with artificial threshold. As we can see from Fig. 12 and Table 7, the quantitative result
of the proposed method is satisfactory for in vivo experiment, where the LE is less than 1mm.
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Fig. 12. Reconstruction results overlaid with CT data of in vivo experiment. (a) coronal-view
results at X = 12 mm. (b) sagittal-view results at Y = 13.2 mm; (c) transversal-view results
at Z = 6.8 mm.
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Among all comparison methods, the proposed method yields the sparest solution. Moreover, the
solution of L2-norm is not sparse, and the ART fails to obtain feasible reconstruction results.

Fig. 13. The iteration number of ADS_PSR and ISPR with artificial threshold of in vivo
experiment.

Table 7. Quantitative results of the in vivo experiment

Algorithm
Location
error (mm)

Recovered
density (g/cm3)

Relative quantity
error (%) PNZ (%)

Iteration
number

ADS_PSR+ IVTCG 0.79 0.013 13.33 2.03 6
ISPR+ IVTCG

(artificial threshold
50%)

1.13 0.011 25.21 2.56 11

ISPR+ IVTCG
(artificial threshold

70%)

1.15 0.011 25.21 2.59 20

IVTCG 1.402 0.009 26.67 2.71 \

Tikhonhov 2.186 0.005 53.33 9.08 \

ART 3.945 0.003 60.00 14.27 \

4. Discussion and conclusions

In this study, we proposed an adaptive shrinking permissible source region framework, named
ADS_PSR for the recovered result of CB-XLCT imaging. In this framework, the shrinking
for reconstruction is beginning from the whole body without a prior information. Meanwhile,
an adaptive multi-scale kernel function is designed to accelerate the shrinking processing.
Specially, in each iteration, the kernel function can automatically select the nodes for next round
reconstruction, at a multi-scale rate according to the shrinking process. Thus, a feasible solution
by the ADS_PSR can be obtained only with a few mesh nodes. Simulation experiment and in
vivo experiment were applied to test the performance of the proposed ADS_PSR framework.
The widely-used ISPR method, IVTVG, Tikhonov and ART algorithms were employed for
comparison. The results demonstrate that all the LE of the simulation case and in vivo case by the
proposed framework were all less than 1mm, and corresponding RQE were almost below 20%.
Compared with traditional ISPR method with artificial threshold, our proposed method gets more
sparse solution with the fewer iterations. These illustrate the potential of the proposed framework
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in improving CB-XLCT imaging for feasible and effective reconstruction. Meanwhile, the results
of stability case further demonstrated the robustness of the proposed framework for CB-XLCT
imaging. Furthermore, the proposed framework can also be extended to other optical molecular
modalities, such as FMT and BLT.

However, it should be noted that the size and shape of nanophosphor target cannot be accurately
recovered in this paper. Besides, the selection of different number of nodes for reconstruction are
often based on experience. Thus, we will focus on these challenges and conduct further research.
In conclusion, the proposed framework has a better performance in terms of accuracy, stability
and practicability. We hope the proposed framework can facilitate the development of CB-XLCT,
as well as other optical molecular tomography technologies.
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